DDoS Event Forecasting using Twitter Data
نویسندگان
چکیده
Distributed Denial of Service (DDoS) attacks have been significant threats to the Internet. Traditional research in cyber security focuses on detecting emerging DDoS attacks by tracing network package flow. A characteristic of DDoS defense is that rescue time is limited since the launch of attack. More resilient detection and defence models are typically more costly. We aim at predicting the likelihood of DDoS attacks by monitoring relevant text streams in social media, so that the level of defense can be adjusted dynamically for maximizing costeffect. To our knowledge, this is a novel yet challenging research question for DDoS rescue. Because the input of this task is a text stream rather than a document, information should be collected both on the textual content of individual posts. We propose a fine-grained hierarchical stream model to capture semantic information over infinitely long history, and reveal burstiness and trends. Empirical evaluation shows that social text streams are indeed informative for DDoS forecasting, and our proposed hierarchical model is more effective compared to strong baseline text stream models and discrete bag-of-words models.
منابع مشابه
Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملSpatiotemporal Event Forecasting in Social Media
Event forecasting in Twitter is an important and challenging problem. Most existing approaches focus on forecasting temporal events (such as elections and sports) and do not consider spatial features and their underlying correlations. In this paper, we propose a generative model for spatiotemporal event forecasting in Twitter. Our model characterizes the underlying development of future events ...
متن کاملA Forecasting with Twitter Data
The dramatic rise in the use of social network platforms such as Facebook or Twitter has resulted in the availability of vast and growing user-contributed repositories of data. Exploiting this data by extracting useful information from it has become a great challenge in data mining and knowledge discovery. A recently popular way of extracting useful information from social network platforms is ...
متن کاملOn the inference and prediction of DDoS campaigns
This work proposes a distributed denial-of-service (DDoS) inference and forecasting model that aims at providing insights to organizations, security operators, and emergency response teams during and after a DDoS attack. Specifically, our work strives to predict, within minutes, the attacks’ features, namely intensity/rate (packets/second) and size (estimated number of used compromised machines...
متن کاملDEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response
In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihoo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017